120 research outputs found

    Optimal Online Transmission Policy for Energy-Constrained Wireless-Powered Communication Networks

    Get PDF
    This work considers the design of online transmission policy in a wireless-powered communication system with a given energy budget. The system design objective is to maximize the long-term throughput of the system exploiting the energy storage capability at the wireless-powered node. We formulate the design problem as a constrained Markov decision process (CMDP) problem and obtain the optimal policy of transmit power and time allocation in each fading block via the Lagrangian approach. To investigate the system performance in different scenarios, numerical simulations are conducted with various system parameters. Our simulation results show that the optimal policy significantly outperforms a myopic policy which only maximizes the throughput in the current fading block. Moreover, the optimal allocation of transmit power and time is shown to be insensitive to the change of modulation and coding schemes, which facilitates its practical implementation.Comment: 7 pages, accepted by ICC 2019. An extended version of this paper is accepted by IEEE TW

    Robust neurooptimal control for a robot via adaptive dynamic programming

    Get PDF
    We aim at the optimization of the tracking control of a robot to improve the robustness, under the effect of unknown nonlinear perturbations. First, an auxiliary system is introduced, and optimal control of the auxiliary system can be seen as an approximate optimal control of the robot. Then, neural networks (NNs) are employed to approximate the solution of the Hamilton-Jacobi-Isaacs equation under the frame of adaptive dynamic programming. Next, based on the standard gradient attenuation algorithm and adaptive critic design, NNs are trained depending on the designed updating law with relaxing the requirement of initial stabilizing control. In light of the Lyapunov stability theory, all the error signals can be proved to be uniformly ultimately bounded. A series of simulation studies are carried out to show the effectiveness of the proposed control

    Neural control for constrained human-robot interaction with human motion intention estimation and impedance learning

    Get PDF
    In this paper, an impedance control strategy is proposed for a rigid robot collaborating with human by considering impedance learning and human motion intention estimation. The least square method is used in human impedance identification, and the robot can adjust its impedance parameters according to human impedance model for guaranteeing compliant collaboration. Neural networks (NNs) are employed in human motion intention estimation, so that the robot follows the human actively and human partner costs less control effort. On the other hand, the full-state constraints are considered for operational safety in human-robot interactive processes. Neural control is presented in the control strategy to deal with the dynamic uncertainties and improve the system robustness. Simulation results are carried out to show the effectiveness of the proposed control design

    Robust Navigation with Cross-Modal Fusion and Knowledge Transfer

    Full text link
    Recently, learning-based approaches show promising results in navigation tasks. However, the poor generalization capability and the simulation-reality gap prevent a wide range of applications. We consider the problem of improving the generalization of mobile robots and achieving sim-to-real transfer for navigation skills. To that end, we propose a cross-modal fusion method and a knowledge transfer framework for better generalization. This is realized by a teacher-student distillation architecture. The teacher learns a discriminative representation and the near-perfect policy in an ideal environment. By imitating the behavior and representation of the teacher, the student is able to align the features from noisy multi-modal input and reduce the influence of variations on navigation policy. We evaluate our method in simulated and real-world environments. Experiments show that our method outperforms the baselines by a large margin and achieves robust navigation performance with varying working conditions.Comment: Accepted by ICRA 202
    • …
    corecore